Worldwide, there were an estimated 19.3 million new cancer cases and almost 10.0 million cancer deaths in 2020.
Nevertheless, we discovered that practically all selected CNN models perform well in the IDC grading task, with an average balanced accuracy of 0.936 ± 0.0189 on the cross-validation set and 0.9308 ± 0.0211on the test set. Our findings indicated that the EfficientNetV2B0-21k (0.72B Floating-Point Operations and 7.1 M parameters) outperformed other CNN models in the IDC grading task. To implement each pre-trained CNN architecture, we deployed the corresponded feature vector available from the TensorFlowHub, integrating it with dropout and dense layers to form a complete CNN model. As such, we would like to conduct a comparison analysis of the performance of seven selected CNN models: EfficientNetB0, EfficientNetV2B0, EfficientNetV2B0-21k, ResNetV1-50, ResNetV2-50, MobileNetV1, and MobileNetV2 with transfer learning. However, there is a dearth of comprehensive performance comparisons of Convolutional Neural Network (CNN) designs on IDC in the literature. Computer-aided Invasive Ductal Carcinoma (IDC) grading classification systems based on deep learning have shown that deep learning may achieve reliable accuracy in IDC grade classification using histopathology images.